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A BOOLEAN APPROACH TO SEMANTICS

by

Edward L. Keenan

0. INTRODUCTION

By a boolean approach to model theoretic semantics I intend one in
which for each model M and each category C of expression in the language,
the set of possible denotations of expressions in C (relative to M) is not
merely some set T, defined in terms of M, but is rather a set on which are

C
defined boolean operations and a boolean relation. That is, T., the type

for C (relative to M), is a boolean algebra. Such an approachcis compatible
with all model theoretic approaches, such as Montague Grammar, and is
exemplified in Logical Types for Natural Language (KEENAN & FALTZ, 1978/81),
henceforth LT.

The purpose of this paper is to present some of the advantages of
formulating natural language semantics in this way, irrespective of what
other model theoretic apparatus is used. Section 1 below presents some
basic céncepts of boolean algebra, and Sections 2 -4 the advantages:

2: simplifying the ontology implicit in the model, and a suggestion for a
new approach to intensional properties; 3: extending the class of expres-
siéns within a category which can be directly interpreted, and a consequent
new approach to presupposition; and 4: enriching the class of categories
which are treated in the logic, and the consequent possibility of stating
universal constraints on the logical form of natural languages which are
not apparent (though not necessarily unstatable) on non-boolean approaches.

Finally, this paper supports a further very general claim. First, I
note without argument that compared to many commonly studied algebras such
as groups, lattices, and rings, boolean algebras possess a particularly
rich structure, sufficiently much that it is surprising that any category of
natural language is semantically boolean. Second, this paper, and in much
more detail, LT(78/81) show that very many categories of natural language

are semantically boolean, so the boolean nature of natural language is not



category specific. And this suggests, as BOOLE (1847) felt, that the
boolean operations represent "laws of thought"
understand the world.
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Similarly (£') (j) =af (£(3))'. The zero function maps each j /onto the 0
element of B (we write, omitting subscripts, 0(j) = 0) and similarly
1(3) = 1. It follows that £ < g iff for all j in J, £(j) < g(j). Note that
J can be any set, in particular a set of n-tuples of places, times, etc.

For purposes of Section 2 (which is self contained and may be omitted
on first reading as it is somewhat more algebraic than the other sections)
two further concepts of boolean algebra will be needed. First, an algebra
is said to be complete if for every subset K of its domain B there is an
element x in B which is the greatest lower bound for K (i.e. x < everything
in K, and if y € B meets this condition then y < x). For a complete algebra
the element x referred to above is denoted AK. Analogously for \/K. Note
that power set algebras are complete. For K € P(X), AK is Just NK, the set
whose members are just those elements in all of the k in K.

Second, an atom of an algebra is an element of the domain which is not
the O element but which no other element is strictly less than. That is,
b is an atom in B iff for all x in B, if x € b then x = 0 or x = b, And an
algebra is said to be atomic if for all non-zero elements y in the domain
there is at least one atom b such that b £ y. Any power set algebra is
atomic, the unit sets being the atoms. (Similarly the algebra 2 is complete
and atomic, and the pointwise algebra FB/J is complete and atomic whenever
B is the domain of a complete and atomic algebra.)

Finally, I note from standard boolean algebra that any complete and
atomic algebra is isomorphic to a power set algebra (the function mapping
an element onto the set of atoms £ to it is an isomorphism of the algebra

onto the power set of its atoms). So up to isomorphism the complete and
atomic algebras are the power set algebras.

2. SIMPLIFYING THE ONTOLOGY

2.1. One of MONTAGUE's (e.qg. 1972) linguistically most useful insights
was his definition of the types (relative to a model) which enabled us to
treat singular terms - John, the king of France, etc. - as taking their
denotations in the same type as quantified NPs like every man. Thus the
logical forms for John walks and every man walks are identical up to the
difference in internal structure of the logical forms for John and every
man. Thus we have a better explanation than in standard logic (SL) for how

we interpret English sentences as a function of their form; in SL every man

is not even assigned a logical form at all.

Let us review briefly the essence of ﬁontague's innovation here. First,
in S a model (the ontological primitives) is a pair <2,0>, where 2 is the
set of truth values and U is the set of "things that exist". In both cases
we have a reasonable pretheoretical idea what the elements of these sets
are intended to be. In particular (ignoring 2 as it is "standard") U is the
type for the individual constants (~ proper nouns) and the range of the
individual variables, so it may contain things like you, and me, and John,
etc. While we might debate whether U and 2 should be taken as primitives
it is clear that these sets do comprise parts of our ontology and it is
not surprising that other categories should have their types given as a
function of these. For example, the type for the l-place predicates in SL
will just be the subsets of U, i.e. P{U), or equivalently the set of func-
tions from U into 2. Let us call these sets (or functions) extensional
properties.

Montague's innovation here was to treat the denotations of proper nouns
(PNs) not as elements of U, but rather as sets of extensional properties,
called for the nonce individuals. More formally, for all x € U we define
the individual determined by x to be {K € U: x ¢ K}. So an individual is
defined in terms of an element of U. And being a collection of sets of
properties (I drop "extensional), an individual is a subset of P(U), that
is a member of P(P(U)). So the type for full NPs like John and every man
is P(P(U)) and that for common noun phrases (CNPs) is P(U). And every man
will be interpreted as the intersection of the individuals which have the
man property; a man as their union, etc. and John, every man, a man, etc.
may be treated as expressions in the same gross category. (I say 'gross'
because PNs will not be interpreted as arbitrary members of TNP but may
only have individuals as their possible denotations, so they are in effect
a distinguished subcategory of NP. Note that an intersection (union) of
distinct individuals is never an individual.)

But the nice ontological character of SL has been lost, for a model
of this system is still a pair <2,U> and while 2 is still the truth values,
the elements of U are now not possible denotations for any expressions in
English. Hence we have no pretheoretical idea what the elements of U are,
and it is mysterious why other expressions, e.g. John, every man, and in-
deed most other expressions, should have their denotations given as a
function of elements of U. Notice that the "things that exist", e.g.

denotations of PNs, are the individuals, not elements of U. So U seems to



be a kind of noumenal world underlying the phenomenological world of
individuals. '

And our onteclogical qualms are not assuaged in the slightest by
noting that U and the set of individuals are in a natural one-to-one
correspondence (so'are the even numbers and the odd numbers, but they have
very different properties). Such a correspondence (onto) just says the two
sets have the same size. But they crucially fail to have the same struc-
ture. For individuals, being sets, are the kinds of things we can take
boolean combinations of, e.dg. intersections, unions, etc. And this we must
do (regardless of how the statement is actually formulated) in order to get
denotations for every man, a man, etc. Moreover, there is no way to assign
a boolean structure to an abitrarily chosen set U. For example, all finite
boolean algebras have 2" elements for some finite n. So there are no boolean
algebras with 3, or 6, or 7 elements. In fact, closing the individuals under
arbitrary intersections and unions gives us P(P(U)), the set of all the sets
of properties, much larger than U.

From this point of view part of Montague's innovation lay in trading
in the elements of U for things which we can treat in a boolean way. And
once this is recognized there is a Very easy way to extend his insight so
as to eliminate the ontological qualms above. This extension not only yields
a new ontology, but it generalizes in ways that permit a new and potentially
more adequate approach to the treatment of "hyper-intensional" CNPs, e.g.
imaginary horse, book that John intended to write but never wrote, etc,

As a first step in the extension notice that if we take TCNP as P(U)
we may automatically regard it as a complete and atomic (ca) algebra its
atoms being the unit sets of elements of U. And the individual determined
by x, namely (K c U: x € K} is {K € P(U): {x} € K}, as trivially {x} < K
1ff x € K. But {x} is an atom of P(U) and ¢ is just the boolean relation on
P(U), so this last set basically defines an individual in terms of the

boolean structure of P(U) = TCNP' So our first step is the following pre-
liminary definitions:

PRELIMINARY DEFINITION 1. A model for L is a pair <2,P>, where 2 is as

vefore and P is any complete and atomic boolean algebra.

PRELIMINARY DEFINITION 2. For each atom b in P, Ib’ the individual deter-
mined by b, =af {p € P: b < p}.

REMARKS on the preliminary definitions:

1) They do appear to constitute a new ontoiogy, for now (extensional)
‘properties and truth values are the ontdlogical primitives, not entities
or individuals and truth values.

2) There appear to be no mysteries in the ohtology since each primitive is
the type for some category of expression. In particular, the elements
of P are the kinds of things that expressions like man, tall man, man
who Mary loves, etc. can denote. And while we shall want to query
further what their exact nature is, we will know how to reason about
them since we know what ordinary expressions they are the intended inter-
pretations of. And

3) up to isomorphism, the class of possible types for CNP and hence of
individuals is the same as on Montague's earlier view. For cbviously if
TCNP is P(U) for some U then it is a ca-algebra and the above definition
picks out the same sets as individuals as the earlier definition. And if
P is not specifically a power set algebra it is, by the remark at the
end of Section 1 isomorphic to the power set of its atoms, so taking
the set of atoms as U we have a type for CNP in the old sense, one that
is isomorphic to the given one. Thus any arguments which would be shown
valid on the new approach are valid on the old and vice versa. So the

two approaches are descriptively adequate to the same extent.

Let us consider some objections to this approach, ones that will
revise somewhat our preliminary definitions. First it has been objected
that this approach is just a "mathematical trick". But that is silly. It is
neither more nor less mathematical or tricky than Montague's observation
that the elements of U are in a one-to-one correspondence to the individuals
as defined on that approach.

More seriously however one can query whether this approach really
constitutes a new ontology or whether it just gives us the same one in
different mathematical garb. To be more precise: What motivation do we have
for taking TCNP (= P) as a ca-algebra other than our desire to treat it as
we always did, namely as a power set algebra? And second, while P itself
may not generally be mysterious, individuals are defined above in terms of
atoms, and are not these properties every bit as mysterious as the elements
of U on the old‘apéroach?

I will answer these objections as follows. First I will show that we

have independent motivation, in terms of correctly representing our



Judgments of logical truth and entailment on English, for taking P as a

complete boolean algebra. Similarly I will ‘show that, taking NP denotations

as subsets of P,

be subsets of p which meet certain conditions, and that when we define in-

dividuals as the subsets of P which meet those conditions we get the indi-

viduals in the old sense. Neither the judgments of validity and entailment

nor the formal conditions mention or in any way presuppose the notion of

an atom or that P is atomic. Thus the notion of individual is conceptually

and formally independent of that of an atom. And third I will show that

there is independent motivation for requiring that P have atoms; specifical-
ly that to correctly represent the valid arguments on English there are

property denoting expressions which should be and are intended to be inter-

preted as atoms. So atoms are not particularly mysterious.

But this is as far as the independent motivation for the boolean nature
of P will go. And if we merely require that P be complete and have atoms
but not be atomic (which would require in addition that for every non-
q in P there is an atom b < g) we obtain a properly lar

than in the extensional systems of Montague or LT,

zZero

ger class of TCNP'S
and this larger class is
rich enough to provide denotations for the hyperintensional CNPs mentioned
above. So in fact what appears to be the descriptively most adequate

approach here does not exactly reconstruct the systems of PIQ or LT. If of

course we impose the additional requirement that P be atomic we do obtain
the earlier systems.

2.2, TCNP should be a boolean algebra

Our intent is that P (= TCNP) provide denotations for expressions like

man, socialist, vegetarian, etc.

among others. We assume that full NPs like
Tohn

and every man will be interpreted as subsets of P. So we want our
iemantics to guarantee that sentences like John is a socialist are true in

4= <2,P> iff the subset of p which interprets John has the property which
interprets socialist as a member. Now consider sentences like (1):

1) Jdohn is both a socialist and a vegetarian.

le want (1) to be true in <2,P> 1ff the John set of properties has the

'roperty of "being both a socialist and a vegetarian". But which property

s that? Clearly it is not arbitrary relative to which elements of P inter-

‘ret socialist and vegetarian (call them p and q, respectively). Arguably
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here) tell us that in any state of affairs exactly one of (4a) and (4b)

below are true: '
(4) a. John is a man

b. John.is not a man.

50 the conjunction of these two sentences must be logically false and their
disjunction logically true. All these judgments are correctly predicted if
the property of "being not a man" is taken as the complement of the proper-
ty "being a man" and we require of any possible PN denotation I that for
any property p, I contains exactly one of {p,p'}. I shall then impose these
conditions in order to correctly represent these judgments.

There is also direct motivation of a different sort for taking TCNP
as a boolean algebra. Consider the logical properties of extensional adjec~
tives (APs) like female and tall. Such APs will be interpreted by functions
from P into P, and if female is such a function f and socialist is a proper-
ty p, then female socialist will be interpreted by f(p), the value of f at
p. But the property f(p) is not arbitrarily related to p. E.g. Mary is a
female socialist entails Mary is a socialist. So we will want to require
that the functions f which can interpret extensional APs meet the condition
that for all p in P, f(p) < p. That is, f(p) A p = £(p) so "being both a
female socialist and a socialist" is not different from "being a female
socialist". And the requirement that PN denotations be strongly closed
under meets guarantees that whenever Mary has the property f(p) then she
has the property p. For f(p) is f(p) A p and by strong closure we infer
that Mary has p.

So another reason for taking TCNP as boolean is that we want to use
the boolean $ relation on TCNP to correctly characterize certain valid
arguments involving extensional APs.

INTERIM CONCLUSION: If we take T as a boolean algebra and constrain

CNP
the interpretations of PNs in the ways indicated we correctly represent

many valid arguments and logical truths (assuming the basic two valued
nature of the system). So we have independent motivation for taking TCNP
as boolean; and we have not covertly relied on any notion of an atom nor
have we in any way assumed that TCNP will be isomorphic to a power set
algebra.

= i complete algebra
2.3. TCNP (=P) is a P ‘

Consider the following valid argument: Mary is taller than every man,
John is a man; therefore Mary is taller than John. Assuming the analysis
so far, what properxty must Mary have above for the argument to be valid?
Well, letting M be the set of PN denotations with the man property, and
for each m, in M letting tmi be the property of "being taller than mi“,
we want Mary's property to be: tm1 A tm2 A ... for each my in M. But this
is just what is meant by A(tmi: m, € M}. So if we take P as complete we
will have denotations for property denoting expressions like taller than
every man. And if we require of PN denotations that they be strongly closed
under arbitrary meets, not just the binary ones mentioned earlier, then
the above argument is shown valid. So I shall take P as complete, and

define individuals (PN denotations) by:

DEFINITION 1. For P any complete boolean algebra, I is an individual1 on
;_I;f I is a subset of P satisfying (i) - (iii) below:

(1) Completeness: for all p in P, either p ¢ I or p' € I.

(11) Consistency : for all p € P, not both p € I and p' € I.

{1ii) Meets for all K¢ P, Kg I iff AK € I.

As Definition 1 does not mention the notion of an atom, or even require
that P have atoms, it is clear that individuals are conceptually and formal-

ly independent of that of atoms. Theorem 1 below may then seem surprising:

THEOREM 1. I is an individual on P 1ff for some atom b € P,

1={qepP:bsqgl.

PROOF. Suppose that I is an individual on P. We show that AI is an atom
and that I = {gq: AI < g}, thus proving the first half of the theorem.

(a} 0 (the zero element of P) is not in I, Otherwise, since 0 = 0 A 1 we
have that 0 A 1 € I, so from (i1i) 1 € I. But 1 = 0', so both 0 and 0' are
in I, contradicting (ii). So 0 ¢ I (and by (1), 1 is in I, so I is not

empty) .

(b) If pe I and p $ q then q € I. By assumption p = (p A q), so

(p Agq) € I, so by (1ii) g € I. (More exactly: {p,q} € 1, whence q € I.)
() {q: M s q} g I. By (iii) AT ¢ I (since I ¢ I), so from (b) 1if

AI £ q then q € I.
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(@ I c{q: AT < q}. Let p € I. By definition of A, AT < p,
(e) I = {q: AI € q)}. Immediate from (c) and (d).

(f) AI is an atom. Suppose otherwise. Then from definition of atom, either
AI is 0 or there is a non-zero p < AI. AT isnot O since O ¢ T and from (1ii)
AI ¢ I. So let p such that 0 < p < AI. Then AI £ p so from (d) p ¢ I. But
also p' is not in I. For otherwise from (d) AI < p', whence by transitivity
of 5, p<p', thus p Ap' =p. But p A p' = 0, contradicting that p # 0.

So p' is not in I. So neither p nor p' are in I, contradicting the assump-

tion that I is an individual. Thus AI is an atom.3

The other half of the theorem is straightforward. Thus, assume that b is
an atom of P and let M = {q: b £ q}. We show M is an individual:

(a) Meets: first, let K € M. So each k in K is in M, so b £ each such K.

So b is a lower bound for K. But AK is the greatest lower bound, so b £ AK,
thus AK is in M.

Second, suppose AK ¢ M. So b £ AK, and since AK < k, all k in X, we have
by transitivity of < that b < k all k in K, so all k in K are in M, so

K ¢ M.

Thus K ¢ M iff AK € M.

(b) Consistency: suppose both p and p' in M. Then b < p and b £ p', so
b £ (p A p') =0, contradicting that b is an atom.

(c) Completeness: suppose b £ p. Then (b A p') # 0. Since b is an atom,

then (b A p') = b, so b £ p'. So for any p, b S por b < p', so either p
is in M or p' is. 01

Theorem | together with Definition 1 tell us that if we take P as
atomic (and complete of course) then the individuals will be just the sets
they were on the earlier definition. So if P = P(U) for some U, the indi-
viduals are just the subsets K of U which contain a fixed element of U.
However, neither Definition ! nor Theorem 1 pPresuppose the existence of
atoms, much less that P is atomic and thus (isomorphic to) a power set
algebra. If P in Theorem 1 were selected as complete and atomless (there
are such algebras) then there would be no individuals on P. Moreover, if P
were selected to have atoms but still not be atomic then the individuals on
P would still be Just the subsets of P which dominate a fixed atom, and
thus still have all the properties guaranteed by the definition of individ-
uval. Note further (see KEENAN (to appear b) for a proof) that from standard

boolean algebra we have that for any cardinal n there are non-atomic
complete algebras with exactly n atoms. So-we may have as many ordinary
individuals as we like without requiring that P be atomic. So the atomicity
of P, which is forced in e.g. PTQ and LT, remains an open question.

We do however want to require that P have at least some atoms. There
are at least two reasons for this. First, if P has no atoms then by
Theorem 1 it has no subsets which meet the condition for being an individ-
ual. But we want such subsets in order to provide interpretations for PNs
like John so that the logical truths and valid arguments mentioned earlier
can be shown to be valid.

And second, it follows from Definition 1 and Theorem 1 that there is
a one-to-one correspondence between the atoms of P and the individuals on
P. (No individual can contain two different atoms, for then it contains
their meet, which is 0, and no individual contains 0 by (a) above). So an
atom is an extensional p_roperty2 which exactly one individual has. And
there are many property denoting expressions in English intended to be
interpreted by such properties: tallest student, first (third, etc.) man
to set foot on the moon, student who stood exactly here at exactly noon
yesterday, man who is the only man that Mary loves, and even doctor who is
John, etc. of course, such expressions might fail to denote atoms (if e.g.
the two tallest students had the same height then none would have the
tallest student property). But clearly such expressions cannot denote
properties that more than one individual has. So if P had no atoms these
expressions would have to denote properties which no individual has, and

that is clearly wrong.

OONCLUSION. We have not taken P as complete and atomic in order to, in
effect, treat it as the power set of some set (the universe of discourse).
In fact, we have not taken P as atomic, but only required that it have
some atoms. Moreover, the notion of an individual is conceptually and
férmally independent from that of an atom, and atoms are not mysterious.
They are the intended denotations for many common expressions. We refer

the reader to KEENAN (to appear a) for a more detailed discussion of this
argument.

2.4. A new approach to hyperintensional CNPs

What are the principle differences between atomic and non-atomic P's



which is obviously wrong.
But if we do not require that P be atdmic we may correctly represent

different hyperintensional CNPs by different properties with the same ex-

tension (in particular the O extension) without recourse to a possible

below and a
s much mqre thorough discussion, The principle difff i
is: If P is atomic (ang c erence is
on
plete) , then P and q are the same elements of world semantics at-all. Thus not requiring P to be atomic gives us the
potential for correctly representing valid arguments which are incorrectly

" represented on standard approaches. Notice of course that taking P as com~

i plete, with atoms, but non-atomic is a move completely independent of pos-

This condition £
ails however for n
on-atomic algebras. we
: may have distinct
sible worlds representations for CNPs. As that approach does seem to cor-

Properti
p es in exactly the same individuals. Query: Do we want th
* n is?
rectly represent at least certain logical notions of necessity and possibil-

in the intensional

ity we could on the suggested approach still take TCNP
logic as FP/J’ we are merely requiring that P be non-atomic. And we do not
need to use the j's to distinguish imaginary lion from imaginary horse but

we can still use them to distinguish say a possibly Albanian diplomat from

want to say t
hat dOCtOI‘ and lawyez are the Same pzoperty even if the indi-
Viduals with one are ust t‘.hose with the Othe!. But of course Standard'

1ntensional g
( )
lo ic SIL has addzessed this pzoblem as fOllOWS. Let us think

::;: ::::::s :he i:ima facie problem, though it does seem funny that in
;s Now en as triples <2,P,J>, doctor and la
proten e ot wyer are inter-~
o intenSi:ns::: ::e:z:ts of FP/J’ That is, in some models they have the
ot a e ers they donot. We rather think of the intension
but e ot ; not varying with how the world is.
4 s e i:rp :pproach, as has been recognized, is not sufficient-
ey N s ?omplete and atomic, any two CNPs which of neces-
st hawe 1y e ¢ tens:.on (same value at 3) in every possible world
reqardtens ae iy Jnajzs;o:;eth:t is be the same function from g into P,
e s . chosen. But there are many examples of such
o imagin::;lio:::et:ele?s shou%d be interpretegd as different Properties,
ot o oy o ; magléary lfon, book that John‘intended to write
v o e - ho::et will write, etc, And clearly no individual, such
o e €, can have the Property expressed by imaginary
o indiVidu;l " complete and atomic P, there is only one element
porse. wn ont o m;szaiely the 0 pProperty, the extension of imaginary
sone o o st Viewetht:eh;ppr:pet:ty. Ditto for Imaginary lion, etc,
r erintensional CNPs must alw

Preted by the sa e
centanons e a:ei;::jj::yo:ofp/Jt that is have the same intension. So

Se IS an imaginary lion, etc, will be valid,

- would have been inconceivable had we not been taking TCNP

a necessarily Albanian diplomat.
If this approach to such irrealis APs as imaginary, unreal, pretend,

make-believe and perhaps mythological and fictional proves viable it will

constitute strong motivation for a boolean approach to semantics, as it
as a boolean

algebra in the first place.

3. EXTENDING THE CLASS OF DIRECTLY INTERPRETABLE EXPRESSIONS

3.1. The most obvious advantage of our boolean approach is that we have

a general ~ but not infallible! - way to interpret conjunctions, disjunc-
tions, and negations of expressions in a given category; namely as the
meets, joins, and complements respectively of the interpretations of the
conjuncts, disjuncts, and “negatees". Thus we need not pretend that the
boolean connectives (and, or, not) "really" only apply to sentences and
"translate” sentencés containing boolean combinations of non-sentences

into ones where all boolean combinations are sentences. Notice that this

is the same type (though in a sense lesser in magnitude) of advantage as
Montague's original proposal. There 1is no particular difficulty in trans-
lating every man walks into (Vx) (man(x) + walk(x)) but if we do we are
saying that the obvious syntactic structure of the English sentence is not
the one we use to assign it a meaning, and we are left with the problém of

explaining how a "right" logical form is learned given all the possible



ones which differ from the "right" one only by logical operators.

Similarly on the boolean approach takén in LT, sentences like John

read Ulysses, every student read a book, and every teacher both read and

criticized some book have identical logical forms up to the difference in
internal structure of the NPs and the TVP. So we have a better account on a

boolean approach of how sentences are assigned a meaning as a function of
their form.

Perhaps more important, we have a better account, at least an account,
for why and, or, and not should be usable so freely in forming complex
expressions in most categories (sing and dance, some but not all, dishonest

or careless, can and should, both in and behind, etc. Namely and, or, and

not are always interpreted as meets, joins, and complements. That they are
meets, etc. of course depends on what their arguments are. So one can
imagine that on the basis of a few simple examples,

and Mary,

sing and dance, John

etc. one learns the basic boolean properties of the boolean ope-

rators, and then extends them naturally to other categories, even in fact

to collocations which are not natural categories, as in every diligent but
not necessarily every intelligent student will pass.
Note of course that interpreting the boolean connectives as the

appropriate boolean functions makes very strong predictions concerning the

logical behaviour of the expressions in question, ones that are often but

not always borne out. For example, not all uses of and in English appear to

be commutative (cf. Mary got pregnant and (then) married vs.
and (then) pregnant). (For more interesting cases see Section 4.)

A second advantage here is that we can directly interpret negation in

all categories (is bald/isn't bald, a solid but not very pretty house,

near but not on the table, some but not all, ete.). So in particular we

have a distinction between VP negation and sentence negation, and can thus

handle the basic cases of Presupposition without recourse to multivalued
logics, supervaluations, etc,

3.2. A new approach to presupposition

Using the boolean representations of LT,

all the sentences below except
(5d) entail (5e).

Mary got married

S0

(S) a. (The king of France) (be bald{
b. (The king of France) [not (be bald)]
c. (The king of France) [be (not bald)]
d. (not [ (the king of France) (be bald)l)
e. (The king of France) (exist).

To see that the relevant entailments hold, consider first that extensio:al
(transparent) VPs like be bald are booleanly speaking structure preserving
functions, that is, homomorphisms. More explicitly, we say that a function
f from a (boolean) algebra B into an algebra D preserves meets iff for all
x,y in B, f(x A y) = £(x) A £(y), where the meet on the right of courseth .
refers to meets in D since £(x) and f(y) are elements of D. And to see a
VvPs like be bald, censtructed as function from TNP (= P(TCNP) and th?? a
power set algebra) into TS (= 2, the algebra referred to in Section

should be constrained to preserve meets, note e.g. that John and some
teacher are bald must have the same truth value as John is bald and some
teacher is bald. Similarly we say for f as above that f preserves comple-
ments Lff for all x in B, £(x') = (£(x))'. And to see that semaftically

be bald preserves complements notice that (not(every student)) is bald '
must have the same truth value as it is not the case that every student is

bald. We now define:

DEFINITION 2. h from B into D is a homomorphism iff h preserves meets and

h preserves complements.

It follows from the (standard) definition that h preserves joins,
since (x Vy) = (x' Ay'")'. Similarly, if x € y then h(x) £ h{y). Further
h maps the unit in B onto the unit in D, and ditto for the zero in B l
(onto the zero in D). To see the last point note that h(OB{ = h(OB/\OBB) =
- h(OB) A h(OéB), s;nce h preserves meets, = h(OB) A h(OB)D, sinc:(z )
preserves complements, = OD’ since the meet of any element, even Bl
with its complement is the zero element of the algebra.

Second, consider the natural semantics for the. It maps properties
onto sets of properties as follows: the(p) is the unique individual which
has p if there is one, and otherxwise it is the zero element of TNP’ that
is the empty set. More exactly, the(p) is the individual determined by p
if p is an atom, and the empty set otherwilse. (So we have another motiva-
tion for wanting P to have atoms, 1f it did no; the(p) would always be {.)

Third, the (transparent) homomorphisms, e.g. be bald, etc. themselves



form a natural algebra (we want to interpret expressions like be bald and

not be old, etc. as the relevant meets and’complements of VP denotation.

And it turns out that a VP homomorphism of this sort is defined by stating_?f

its values on the individuals! See LT for a proof. That is, for any func-
tion from the individuals into 2 there is a unique (complete) homomorphism
from TNP= P(TCNP) into 2 having just those values on the individuals. And
in particular if h is a VP homomorphism then (h') is that vp homomorphism
which assigns to each individual I the opposite value from what h assigns
it. Thus (not(be bald)) will be true of John iff (be bald) is false of
John, which is intuitively correct.

Now consider the entailments mentioned above. If either be bald or
not (be bald) hold of the denotation of the king of France then that denota-
tion is not the zero element since be bald etc. are homomorphisms and map
zero elements onto the zero element (£) in 2. And if the king of france
denotation is not the zero element it is an individual and thus has the
existence property. So both (5a) and (5b) entail (5e). Notice that (5d) ,
sentence negation, will not entail (5e) since (5d) will be true just in
case (5a) is false, and if France has no king then (5a) is false. So
sentence and VP negation are nonftrivially different at this point.

And this suggests the following definition of presupposition, using
HD/B to denote the set of homomorphisms from B into D:

DEFINITION 3. For all b
in B, din D, h in HD/B' if HD/B is a boolean

algebra then the pair <h,b> logically presupposes d iff h(b) < 4 and
(h') (b) < 4.

And by extension we may define:

DEFINITION 4. For S and T sentences of L, S presupposes T iff S is of the

form (np,vp) and for all interpretations m of L, <m(vp) ,m(np)> logically
presupposes m(T) .

Definition 4 may seem insufficiently general in that it only applies
to S's of the subject~predicate form, and not say to ones that are conjunc-
tions of other S's, etc. But the definition does appear to capture the
clearest case of presupposition in the literature and it nowise precludes
any extensions to larger classes of S's.

On the other hand, one may doubt whether Definition 4 will apply to

the other clearest case in the literature, namely that factive sentential

predicates presuppose their sentential subjects. It would appear that such
“p:.dicates are not homomorphisms as assumed in Definition 4. E.g. (6a) does

. not even entail (6b), much less preserve meets.

(6) a. That John passed and Mary failed is strange

b. That John passed is strange and that Mary failed is strange.

In fact, however, there is an independently motivated analysis of factive
predicates which does treat them as homomorphisms and which accounts for an
ambiguity and some entailments not, to my knowledge, previously noticed.

" I gketch the analysis here and refer the reader to LT (to appear) for

dotails.1

Take (standardly) the intensional type for S to be the set of functions
from J, the set of possible worlds, into 2. By pointwise definition on J it
{8 a boolean algebra, isomorphic to the power set of J. Denote this set Pr
(for proposition). A property of a proposition will be a function assigning
each proposition, i.e. each element of Pr, a truth value. And for each p in
Pr, define I_ to be the set of properties assigning p value t. Inter-

- pret that (complementizer) in English as a function mapping each p in Pr

onto Ip' and note that that is one-to-one from Pr onto the set of Ip's. And

‘take the type for sentence complements in general to be all the sets ob-

tained by taking arbitrary intersections, unions, and complements of the

I 's. That set is provably the set of all sets of properties of propositions,
i.e. P(P(Pr)), a power set boolean algebra. Of course conjunctions, dis-
junctions, and negations of that+S's are just the meets, joins, and comple-
ments of the conjuncts, etc. as usual. So for example, in (6a) above

be strange is predicated of I(pAq) the set of functions which assign

(p A Q) value true, where p is the proposition which interprets John passed
and q the one which interprets Mary failed.

In (6b) on the'other hand, be strange is predicated once of Ip and
once of I_. Now given that neither p nor q are s to the other, so p,q, and
(p A g) are all distinct propositions, it follows that Ip, Iq’ and I(pAq)
are different sets of properties. In particular I(pAq) will contain that
function which maps (p A q) onto t and everything else, e.q. both p and q,
onto f. Hence, correctly, (6a) on this account will not entail (6éb).

Notice now that all sentence complement taking predicates are
homomorphisms! Thus (7a) and (7b) will be logically equivalent, and this

judgment is correct:



and unpleasant
ft early is both strange
(7) a. Both that John passed and that Mary failed are strange a. That John le

i t
‘ t John left early is strange and that John lef
b. That John passed is strange and that Mary failed is strange, Tha

3 early is unpleasant.
Similarly, this analysis predicts the logical equivalence of (8a) and (8b)ﬁ

a. That John left early is not strange
8) a. That John passed and not that Mary failed is strange

Ol £ ar and i ot e t. ange
John left e ly t is n th case that it is str

b. That John passed is strange and it is not the case that that he did.
it is strange that Mary failed.

tes on a pro-
that the value of a conjunction of factive predicate

= {10a) says

Notice also that elements in the type for sentence complements (5) will be

ona Po n
(

w‘iti 1 individua s e ne intwise on e naiviauals unctions

ssions o he than that+S"' divid ] i defi fal twi th indi a 1 £ ti

8 and their boolean combination,
At a first guess for example everything in John beljieves everything should
be the intersection of the Ip taken over all P in Pr.

e ndividuals q Y p. homom phiS |8

on the i extendiug uniquel to complete [e) oY ms Thus for
and F £ and g factive functions (f A C_]) (1 ) = £(XI ) A g(I ) , meets on the Iight
bﬂing taken in the alQEbIa Pr of propost tions.

More interestingly, (11) says that the COmplement of a factive pre-

Harry said might be represented as the union of the I
Harry said Ip is true, etc,

©

which are such that

And the S taking predicates also behave homo-

b
morphically on such elements of T§, e.g. (%9a) and (9b) below are judged 9

| =p A (F(X))', (meets and com-
" dlcate is still factive. That is, (£')(I) =p A (£(I))"

traightforward to show
Pr of course). It is s

the right taken in

plements on

logically equivalent:

i d that meet
i tions are factive, an
lements of factive func
that meets and comp
(9)

. (Joins
. lement as defined satisfy the axioms of boolean algebra. (

m

a. Something but not everything is strange and comp

b. Something is strange but it it not the case that

: e 1 wise on e ' like ts. )
e ] are defined po nt th I s mee
Y i ng is strange . E

lies
(treating S's as NP's) our definition of presupposition app
Thus re

to factive )24 at s C they ar omo orphisms and, moreover yields
ti edicates, ince e h o1 ' ' ’

(Many intriguing questions arise here concernin
world indices,

he believes,

g the binding of possible
the validity of sentences like Jobhn beljieves everything that %
the entailment between everything which is so is strange
therefore the fact that everything which is so is Strange is itself stranger

Consider now the specifically factive character of be strange, ironic,_%
surprising, pleasing, ete. Clearly that John bassed is strange entails

John passed. So we want to restrict the possible interpretations of §
taking VPs like be strange etc. to those functions from P(P(Pr)) into Pr
which are both homomorphisms and factive, as defined in:

. e and that F not -is Stla“ge)
the correct results: Both that P is Stla“g (
‘Qnta P, d It no the case that that P is stxange doe not, as it
il An is t [ ] 8 ’
only say t that™ P strange fa e, which t will b e.
1 s tha h ig ran is 1ls ' hi i 1 e if P is fals
8
I summary being able to take complements in the types for essential-
n r
a categories has enabled us to define a presuy osition relation which
captures the clear cases, leaves extensions to less clear ones open, and
pe D' xy g lean g ries
ds crucially on s tential and ordina VPs being boole
en ti I in cateqo
depen
with the Consequent distinction between VP and S neqation. Moreovex, our
ludgments of presupposition here are accounted for by the independeutly

DEFINITION 5. A function f from P(P(Pr)) into Pr
SISt SUN O
in Pr, f(Ip) s p.

additional
t of boolean structure to the categories. No
" motivated assignmen e e o
'8 factive Lff for alle apparatus (3 truth values, gaps, supervalua e
e
ture the clear cases of presupposition: they follow from
cap

structure of the relevant categories.
Chosing be strange from the factive functions then we are guaranteed

that the truth value of that John bassed is strange in 3 < the truth value
of John passed in J, and thus the former sentence entails the latter.

Now consider boolean combinations of factive predicates.
a~ and b-

4, ENRICHING THE TYPES

Clearly the

4.1, Since the types for most CﬂtegOrieS are boolean algebzas it is not
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surprising that subcategories of a category may be defined according as the
expressions in them must satisfy one or anofher boolean conditions on their
denotations. For example, the APs female, tall, skillful , fake, and alleged
all belong to logically distinct subcategories of AP, distinguished in terms
of the boolean properties of the functions which can interpret them. (and
each can be booleanly distinguished from the irrealis APs like imaginary 3
if the semantics suggested in Section 1 is adoped.) And one of the ultimate
aims of a semantic investigation of a language is to state the "meanings"
of each expression in the language. While we are very far from that goal,
being able to discriminate subclasses of expression which are grossly
semantically similar is a positive step. So the fact that many expressions
can be semantically distinguished in terms of the boolean properties of
their denotations is a positive recommendation for a boolean approach to
semantics.

Furthermore, most categories will be interpreted by functions from one
boolean algebra to another, and hence distinct categories may be compared
as to whether the conditions used to distinguish their subcategories are
the same or not, And many striking similarities emerge. E.g. the logical
subcategory features we need for APs overlap very significantly with those
we need for adverbs, but almost not at all for those we need for VPs. VPs
on the other hand are logically very similar in terms of subcategorization
to TVPs, heads of bossessives, etc. Grouping together categories which
share many logical subcategorization features we find that they correspond
reasonably well to natural syntactic classes (or super classes), which
further supports the claim that the syntactic structure of a language
reveals its logical structure.

Table I below is a first and very incomplete attempt to state these
syntactic and logic correlations. On the left we give three syntactically
defined classes of expressions and in the columns on the right which clas-
ses are subcategorizéd for which logical properties. The syntactic classes
are: Modifiers, Predicatives, and Specifiers. Modifiers (Mods) are expres-
sions which combine with elements of various categories to yield expres-
sions in the same category. They will include APs, adverbs, PPs, ad-adjec-
tives (e.g. very in very tall, etc.) and perhaps some ad-determiners (e.qg.
very, too, etc. in .very many, too few).

' Predicatives (Preds) are expressions which combine with full NPs and
various "nominalized" structures, e.g. nominalized S's (including S's), VPs,

etc. They include the VPs, TVPs, Ditransitive VPs, Prepositions, "transitive"

m
Eoubines with an NP such as every man to form an NP, every

impose
.preds are further distinguished from Mods in that only Preds may impo

sessives
NPs e.g. relative (of), employer (of), etc. and heads of pos

's) ‘father as something which
' (somewhat debatably). E.g. we analyze ('s) fa

an's father.

NP) arguments.
- ::ei:;i:r; (;pe:s) hardly constitute a super class since thetozij
clear cases are the Determiners (Dets): every, a, no, some but ;z Sen;ence
etc., though possibly the to in to smoke is unhealthy and possibly -
complementizers will ultimately be included here as well. Semantically

r set).
Specs map a set into a set of a higher type (extensionally, its powe

TABLE I

Syneactle Logical Subcategorization Features
’ nt
ciees restrict. ~ preserve increase reverse transpare
absolute structure decrease polarity
(Hom. ) consexvative
o yes

vHods ves never — (?) n
preds  (never)  yes  ==——- yes yes
Preds (never) yes

never ves (?) yes yes

Specs @~ —-——-

then
1 shall first discuss the interpretation of the entire Table and the
‘ cate-
resent some of its entries in more detail, defining the logical sub
p
gorization features. .
Column 1 says that Mods are commonly subcategorized according as they
o
never
are restricting or absolute. Preds never are, though the line below
icti . are
hasizes that most of the failure is definitional. restricting, etc. a
ronton d most
features only defined on functions from an algebra into itself, an
ads of
Prads are not functions like that, though those that are, like he
never
ssessives, are never subcategorized as restricting, etc. Specs are
po ’
t.
functions of the right sor .
In column 2 we see that Preds are commonly subcategorized according
homomoxr-
they preserve the boolean structure of their domains, that is, are
the
phisms as defined earlier. Mods and Specs never are, though logically Yy
could be.
i nc-
Column 3 days that features like increasing, etc. only apply to fu

i d
tions of the sort that Specs are. Column 4, polarity reversal (an



polarity preservation) logicall i i i
) gically applies to all three syntactic superclas- gimilarly, manner adverbs and many basic PPs (in the garden) will be

ses and, due to limited investi ’ i l
Seill ! gation on my part, all entries are tentative restricting. E.g. the individuals who are working carefully are a subset
ti it seems to me that Mods will n

ever be so subcategorized, Preds very of those who are working, those who are working in the garden are a subset

llkely will be, and Specs I am unsure of. (Many of them do reverse polazity,‘ rkin etc Some adverbs of course, e.g. [ ‘ Y

. ¢ those who are Wo Jr

but that normally follows from the inde ndent co t i e Spec ' 1 are not reStZiCti“g
pe constraint on th pec, 1 allegEdly ostenslb Yy, etc.

the set of restricting functions from an algebra B into it-
which I shall call a restrict-

as most are logical constants, so it is not likely that we need subcate-
Moreover,

gories here, that is, Specs which are not logical constants b i
g ut which must self possesses a natural boolean structure,

be constrained to be interpreted by polarity reversal functions.) for £ and g restricting functions and b in B,

And in column 5 th : ing algebra, as follows:
0 w :
e see at transparency may and does subcategorize (£ A g} (b) =df £(b) A g(b); analogously for joins. And (£')(b) = bA (£(b))'s

all superclasses. Moreo i i ;
ver, in distinction to the other features transparen-# o(b) = 0, and 1(b) = b. The interesting property of a restricting algebra

cy is not defined with reference to the boolean structure of the types. predicates

4s the definition of complement (note the analogy to the factive

I mention it because it interacts in interesting ways with the other that a (not diligent) tudent is not simply an abject

re). It says e.g.

fostuxes. E.g. While it is logically possible for fods to be & restricting {e.g. my pen) which fails to be a diligent student, it must be a student

and + transparent in all combinations, note:
which fails to be a diligent student.

So the cross categorial generalizations of Table I can be extended

regarding Mods as follows: languages may present modifiers of major cate-
icting or not, and boolean combi-

UNIVERSAL GENERALIZATION 1. All transparent modifiers are restricting.

Likely further study of the distribution of subcategory features gories, they may be subcategorized as restr

within and across superclasses will reveal further constraints on the pations of restricting Mods will be interpreted as per the restricting

logical form of natural language which do not follow from the definitions _algebra defined above.

of the logical features themselves. E.g. restricting slightly an observa- And within the restricting Mods there are still quite general subcate-

tion due to Montague we may say that lexical VPs are always transparent . gory distinctions to make. Consider the logical differences between "abso-

(derived VPs like be required to be a citizen need not be). lute" APs like male, female, mortal, etc. and "merely restricting" ones like

Turning now to specifics, consider first the Mods. They are inter- tall and skillful. The former do more than merely restrict the property

preted by functions from an algebra into itself (see LT 81 for a generali- . they modify, they actually determine another property. Thus to say that

zation of the notion of a modifier). We define: s to say that Mary is both a lawyer and a female

Mary is a female lawyer i
individual. But to say that Mary is a tall lawyer does not entail that

DEFINITION 6. A function f in F is restricting iff f£(b) < b, all b in B, suppose that lavyers are all short compared

B/B Mary is a tall individual (e.g.

3 ts us to
The most common and most productively formed APs in a language will to individuals generally). So Mary is a tali lawyer only commits

Mary's being tall relative to lawyers, not to individuals generally. More

be restricting. Thus, mixing levels, tall(man) S man, which is equivalent s
put ceases to be when female 18

generally the followlng argument is valid,

to saying that the set of individuals which have the tall man property
replaced by tall or by skillful: Mary is a female lawyer and Mary is an

is a subset, necessarlly, of those with the man property. Similarly, both
artist; therefore Mary is a female artist.

To build these observations into our semantics in a general way, note
existing) is the unit
it is U if P is taken

female and skillful are restricting, but fake and alleged are not. We may

then distinguish a proper subcategory of AP, call it QP, whose type will
r

be the set of restricting functions from T, into T... APs not in this that the property of being an individual (i.e.

category will not be required to be interpreted by restricting functions.
Note further that some Ad-adjectives will be restricting. E.g.

property of the set of extensional properties P. E.g.

as P(U). So we define:

J( ‘j‘l’ < tall (i-e. for all propartles P (veru tall < tal
=bh A f(l) all b in B.
DEFINITION 7. £ in FB/B is absolute iff f(b) ’
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surprising that subcategories of a category may be defined according as the
expressions in them must satisfy one or anofher boolean conditions on their
denotations. For example, the APs female, tall, skillful , fake, and alleged
all belong to logically distinct subcategories of AP, distinguished in terms
of the boolean properties of the functions which can interpret them. (and
each can be booleanly distinguished from the irrealis APs like imaginary 3
if the semantics suggested in Section 1 is adoped.) And one of the ultimate
aims of a semantic investigation of a language is to state the "meanings"
of each expression in the language. While we are very far from that goal,
being able to discriminate subclasses of expression which are grossly
semantically similar is a positive step. So the fact that many expressions
can be semantically distinguished in terms of the boolean properties of
their denotations is a positive recommendation for a boolean approach to
semantics.

Furthermore, most categories will be interpreted by functions from one
boolean algebra to another, and hence distinct categories may be compared
as to whether the conditions used to distinguish their subcategories are
the same or not, And many striking similarities emerge. E.g. the logical
subcategory features we need for APs overlap very significantly with those
we need for adverbs, but almost not at all for those we need for VPs. VPs
on the other hand are logically very similar in terms of subcategorization
to TVPs, heads of bossessives, etc. Grouping together categories which
share many logical subcategorization features we find that they correspond
reasonably well to natural syntactic classes (or super classes), which
further supports the claim that the syntactic structure of a language
reveals its logical structure.

Table I below is a first and very incomplete attempt to state these
syntactic and logic correlations. On the left we give three syntactically
defined classes of expressions and in the columns on the right which clas-
ses are subcategorizéd for which logical properties. The syntactic classes
are: Modifiers, Predicatives, and Specifiers. Modifiers (Mods) are expres-
sions which combine with elements of various categories to yield expres-
sions in the same category. They will include APs, adverbs, PPs, ad-adjec-
tives (e.g. very in very tall, etc.) and perhaps some ad-determiners (e.qg.
very, too, etc. in .very many, too few).

' Predicatives (Preds) are expressions which combine with full NPs and
various "nominalized" structures, e.g. nominalized S's (including S's), VPs,

etc. They include the VPs, TVPs, Ditransitive VPs, Prepositions, "transitive"

m
Eoubines with an NP such as every man to form an NP, every

impose
.preds are further distinguished from Mods in that only Preds may impo

sessives
NPs e.g. relative (of), employer (of), etc. and heads of pos

's) ‘father as something which
' (somewhat debatably). E.g. we analyze ('s) fa

an's father.

NP) arguments.
- ::ei:;i:r; (;pe:s) hardly constitute a super class since thetozij
clear cases are the Determiners (Dets): every, a, no, some but ;z Sen;ence
etc., though possibly the to in to smoke is unhealthy and possibly -
complementizers will ultimately be included here as well. Semantically

r set).
Specs map a set into a set of a higher type (extensionally, its powe

TABLE I

Syneactle Logical Subcategorization Features
’ nt
ciees restrict. ~ preserve increase reverse transpare
absolute structure decrease polarity
(Hom. ) consexvative
o yes

vHods ves never — (?) n
preds  (never)  yes  ==——- yes yes
Preds (never) yes

never ves (?) yes yes

Specs @~ —-——-

then
1 shall first discuss the interpretation of the entire Table and the
‘ cate-
resent some of its entries in more detail, defining the logical sub
p
gorization features. .
Column 1 says that Mods are commonly subcategorized according as they
o
never
are restricting or absolute. Preds never are, though the line below
icti . are
hasizes that most of the failure is definitional. restricting, etc. a
ronton d most
features only defined on functions from an algebra into itself, an
ads of
Prads are not functions like that, though those that are, like he
never
ssessives, are never subcategorized as restricting, etc. Specs are
po ’
t.
functions of the right sor .
In column 2 we see that Preds are commonly subcategorized according
homomoxr-
they preserve the boolean structure of their domains, that is, are
the
phisms as defined earlier. Mods and Specs never are, though logically Yy
could be.
i nc-
Column 3 days that features like increasing, etc. only apply to fu

i d
tions of the sort that Specs are. Column 4, polarity reversal (an
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This says directly that a female lawyer is a lawyer and a female
existent (individual). Absolute functions a}e obviously restricting (since
b meet anything < b). Moreover, the reader may check that meets, joins and
complements of absolute functions are absolute, so these functions actually
form a subalgebra of the restricting algebra, one which is in fact isomor-
phic to B! (Note that two absolute functions differ iff their value at 1 is
different; that can be anything we like, so there are as many absolute
functions (but not more) than elements of B.)

Not surprisingly then we find that absolute APs behave syntactically
much more like CNPs than do the merely restricting ones. E.q. they occur
closer to the CNP than the others a tall female lawyer but ?? a female
tall lawyer; they occur predicatively without CNP heads, e.g. Mary is a
female, but *Mary is a tall. Like CNPs but in distinction to merely
restricting APs they do not naturally take degree modifiers or have
comparative or superlative forms. Note that the existence of superlative
forms for non-absolute restricting Mods is a natural expectation on this
semantics. E.g. tall tall lawyer is generally a different property from
tall lawyer, as the former requires being tall relative to tall lawyers
whereas the latter only requires being tall relative to lawyers. However,

.it follows from the definition of absolute that female female lawyer is the
same property as female lawyer. So iteration is logically pointless. Yet
iteration seems to be the natural interpretation for the basic degree
modifier very. E.g. as a first step in the semantics for very we might
require that very(f) (b) maps b onto £(f(b)).

Notice now the existence of absolute VP mods, and a generalization
apparent on boolean approaches but perhaps not on others. First note that,

holding the point in time constant (12a) and (12b) are L-equivalent:

(12) a. John [is singing in the garden (at tO)]
b. John [(is singing and is in the garden) (at to)].

So extensionally to sing in the garden and to sing and be in the garden
are the same, Thus the in the garden function maps a VP like sing onto the
meet of sing with the fixed VP be in the garden. And this intransitive use
of be means essentially exist (at a point in time), and that is just the
unit element of the (extensional) VP algebra, that is, that is the VP
homomorphism which assigns all individuals value t. So semantically a

stative locative PP (e.g. ones formed from in, on, at, near, behind, etc.)

Qo

but not in general others is a function f mapping a VP interpretation h onto
(h A f(ivp)). So to characterize this subcategory it is enough to categorize
them as VP Mods, +absolute. The general definition of absolute for Mods
takes care of the rest.

Note that on a non-boolean approach it is not at all apparent that
there are any logical similarities between PP semantics and (absolute) AP
semantics. And this similarity is supported by similarity in syntactic
behaviour. E.g. just as absolute but not merely restricting APs may func-
tion like CNPs in certain contexts (mentioned above) so PPs (together with
the constant be) function like VPs, (John is in the garden, etc.) but those

merely restricting adverbs do not so function, *John is carefully.

4.2. Homomorphisms

We have already discussed {(transparent) VPs like be bald, be a linguist,
vhich behave homomorphically on their arguments (subjects). Similarly, many
(transparent) TVPs behave homomorphically. E.g. kiss(Mary and Sally) is
semantically the same VP as kiss(Mary) and kiss(Sally), so kiss preserves
meets, etc. Of course many TVPs are neither transparent nor homomorphisms
{homs), e.g. seek, etc. (To look for the President or the Vice Pres. is not
necessarily the same as looking for the Pres. or looking for the Vice Pres.,
though in fact there seems to be an ambiguity here similar to that mentioned
for the factive predicates in (6)). There is however an interesting cooccur-
rence generalization here. Namely, while it is logically possible for a
TVP to be + tr(ansparent) and + hom, and yield VPs which are any combina-
tion of these two features, in fact it seems that +tr, +hom TVPs always
yleld +tr, +hom VPs. E.g. the VP kiss(Mary) is clearly transparent and a
homomorphism. I can find no apparent logical reason for this, but it seems
similar to the generalization noted earlier that lexical VPs are usually
transparent. So it seems that when an n-place Pred is transparent on its
argument it forms n-1 place ones which are transparent on theirs (n > 0).
Similarly perhaps for the feature +hom.

Note also that for the +tr +hom n-place Preds (n is the number of
NPs they ultimately combine with to form a Sentence or O-place Pred) we
have a quite general syntax and a correspondingly general semantics:

The O-place Preds are the sentences, and their type is (extensionally) 2,
a complete and atomic boolean algebra. The n+l place Preds are, categorial-

ly, Pn/NP, and semantically their type is the homomorphisms from TNP
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into Tpn, regarded as a boolean algebra itself, the operations being defin-
ed pointwise on the individuals.

And it seems that this general notion of an n-place Pred is lingquistic-
ally enlightening. For example, Passive can be formulated (see KEENAN 1980
for details) as an'operation which universally maps n+l place preds onto
n-place preds, with of course a uniform semantics - that in (13) will do

as a first approximation.

(13) (o tpass By ) (xp) o) () =V G (R 50D ) G5,y ) ()

where the x, and y range over individuals. So this view leads us to expect
the existence of passives of intransitives, as in Turkish, Latin (curritur
= being run), etc. of the category sentence! Similarly, Causative can be
given a general definition as a class of operations deriving n+l place Preds
from n-place ones, etc.

Note also that it is not only the "verbals" among the Preds which may
behave homomorphically. Some "transitive" CNPs will, E.g. if John has the
property expressed by friend of both Bill and Mary then he must have the
property expressed by friend of Bill and friend of Mary, and conversely.
Moreover, noting that in LT the extensional type for CNP is isomorphic to
that for VP, it will follow that the extensional type for the homomorphic
“transitive" CNPs will be isomorphic that for the +hom TVPs, actually
Justifying our informal use of “transitive" here and giving to expect that
e.g. "nominalizations" of TVPs will yield “transitive" CNPs, e.g.
destroy (the city) / destruction (of) the city, etc. Much more could be
said here.

So Preds are commonly subcategorized as +hom or -hom. (Some -hom VPs
will be: love each other, be the two students I know best, ate the whole
cow (between them), etc. Note that subjects of such predicates formed with
and will probably require a different and from the one we have been treat-
ing booleanly. Thus not all the and's in Both John and Mary and (also)
Bill and Emily love each other can be treated as intersections, otherwise
we obtain as a reading that expressed by John, Mary, Bill, and Emily all
love each other.

It is interesting to query here why Mods and Specs (/ Dets) are never
sﬁbcatégorized as -+hom. For the Mods the features we have used are largely
incompatible with being a homomorphism. E.g. suppose that f is both
restricting and a homomorphism. Since it is restricting we have that

f(p') < p', and since a hom. f(p') = (F(p))'. So (f(p))' < p', sop s £(p).
But since f is restricting, £(p) S p. Thus'f(p) = p, and since p was arbi~
trary we have that f is the identity function. So only one restricting
function is a homomorphism.

And it is easy to show that no negatively restricting function
(£(p) < p', all p), the interpretation for APs in the fake, etc. class, can
be homomorphisms (since £(1) = 0). Similarly, the irrealis ones will not
preserve the unit. But why aren't there other subcategories of AP, say the
poorly understood class of apparent, alleged, ostensible, which behave
homomorphically? And why do not Dets as a class (or as logical constants)

preserve the boolean structure?
4.3. Determiners
In the simplest cases Dets are functions from B into P(B). We define:

DEFINITION 8. £ in F is increasing iff for all p,q,r in B, if

P(B)/B
p € f(r) and p € q then q in £(r). f 18 decreasing 1ff if p € q and q in

£(r) then p in £(x).

For example, without argument, Dets like every, a, the, three, most,
more, than half, uncountably many, etc. are increasing. Negations of in-
creasing ones are decreasing, e.g. not a, not every, etc. as well as no
(= not a), at most three, fewer than three, etc. Dets like all but three,
some but not all, exactly three, etc. are neither increasing nor decreas-
ing. While the features increasing and decreasing have received the great-
est attention in the literature on Dets (logically speaking) it is the
property of being conservative defined below which actually seems to char-

acterize the {(one-place, transparent) Dets in English.

DEFINITION 9. £ in F, is conservative iff for all p,q in B, p € £(q),

P(B) /B
1ff (p A q) € £(q).

This definition may seem unintuitive and "mathematical" at first
sight but in fact it is based on a sound intuition, one closely related to
the Fregean compogitionality condition. First consider that some simple
Dets clearly meet it. Suppose that every student has a property p, and
let s be the student property. Well, then clearly every student has both
s and p, that is (s A p). And if every student has (s A p} then in partic-
ular every student has p. So p € every(s) 1ff (p A s) € every(s). Othexr



simple Dets are equally easily reasoned, as are more complex ones like some
but not all and the italic portions of (14)' below:

(14) a. Every student but John left.

b. More students signed than teachers who didn't (sign)

We refer the reader to KEENAN & STAVI (to appear) for a thorough exposition
of the treatment of Dets in English presented here.

The intuition behind the definition is this: if 4 is an English Det we
expect the interpretation of e.g. d(student) to depend in a substantive way
on which individuals have the Student property,
that do not. d(student) could not e.gq.

and to not depend on ones

refer to the properties shared by all
cats, And Definition 9 captures (perhaps not as perspicuously as it might)
this intuition. For it follows from Definition 9 that the value of a Det f
at a property p is determined by those properties q in £(p) which are < p

and thus ones which only individuals having p have. More explicitly:

THEOREM 2. Let A = {q ¢ £(p): q < p}. Then f(p) = {r: r A P € A}.

PROOF. Let s e f£(p). By the definition of conservative,
and since (s A p) < p then (s A P) € A, so 8 € {r:
other way, let s ¢ {r:

(s A p) e £(p),
(r A p) € A}. Going the

(r Ap) e ). So (s Ap) e a. By definition of a,
then (s A p) in f(p). Thus £(p) = {r: (r Ap) ea)}. O

This characterization of Dets is interesting for two additional reasons.
First it clarifies the difference between the kinds of functions Dets are
as opposed to homomorphisms. Since the value of a Det at
Properties < p,

p depends only on
it follows that a Det has the smallest range of possible

values at the ¢ property,
atoms, etc.

the next smallest range of possible values at the
and the greatest range at the unit property. Homomorphisms

are not at all like ;hat. They must for example map the unit onto the unit

S0 they have no choice at the unit property (though as there are Dets which

map the unit onto the unit this fact is not incompatible with being a Det).

And second, this characterization brings out a certain similarity

between Dets and the restricting APs, clearly the most widespread and

productively formed of the APg, Namely, a restricting AP £ must map p onto

Some q < p. And a Det(p) is a function of a setof q<p
reasonably natural analogue of

This geems a

"higher type" restricting AP (though the

closest analogue would be a fgnction mapping p simply onto a set of proper-

ties £ p, and such functions are not Dets) .

e i A

4.4, Polarity reversal

Drawing on a number of insightful observations of FAUCONNIER (1979) and
LADUSAW (1979) we define, for B and D any boolean algebras:

DEFINITION 10. f in FD/B reverses polarity iff for all x,y in B, if x £ y,

then £(y)  £(x); and f preserves polarity if £(x) < £(y).

Although not described in boolean terms of polarity reversal, Fauconnier
and Ladusaw have pointed out interesting correlations between the presence of
negative polarity items and polarity reversal (pr) operators. Roughly, a suf-
ficient (but not necessary) condition for negative polarity items to occur
is that they be under the scope of a pr operator.

Notice that negation (boolean complement) is a pr operator from an
algebra into itself. In fact there we have x < y iff y' < x'. In this sense
all categories have pr operators. But again negation is a logical constant,
so this fact follows from its independently constrained interpretation. It
1s not clear that we need to subcategorize a category for such operators.

The best candidates for such subcategorization will be sentential Preds,
e.g. Implausible, doubtful, etc. and in a slightly more restricted sense
that I do not have the space to define, the negative factives like strange,
surprising, etc. Among other Preds, possibly the TVP suspect and a few
“transitive" APs like suspicious (of), afraid (of), have readings on which
they reverse polarity. Ladusaw (op cit) further cites the interesting case
of the negative preposition without.

Among the other superclasses, I know of no convincing cases of pr Mods
("transitive" APs etc. are not Mods, they are Preds). Among the Dets there
are many. every reverses polarity and the complements of most other (not of
every) "basic" Dets (see KEENAN & STAVI (op cit) for the definition of
basic Det) do, e.g. not a, etc. But again as these are logical constants it
is not clear that we shall have to specify a set of non-logically deter-
minate Dets which are constrained to be interpreted by pr functions. Ana-
logous claims hold for certain "transitive" S Mods, e.g. if (on its oxdinary
truth functional definition). (It is easily shown that for propositions p
and q, 1f p £ g then if q £ if p in the sense that for all propositions r,
if q thenr £ if p then r.)

So the advantage of our boolean characterization is that we can describe

what a variety of elements in different categories have in common logically,
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namely they reverse polarity, and thus give a uniform statement to many transparent (tall, and few other one dimensional physical object modifiers

{but not all) of the observations in FAUCONNIER (op cit) and LADUSAW (op are the exception here). So e.qg. if doctor and lawyer have the same exten-

cit). I might only note in conclusion here that not all "negative" items slon in j, i.e. the doctors and the lawyers are the same individuals, it

will reverse polarity. For example the complements of restricting functions clearly does not follow that skillful doctor and skillful lawyer have the

are still restricting and do not reverse polarity. So e.g. the (not diligent) same extension, as a given individual might be a skillful doctor but an

students are not necessarily a subset of the (not diligent) young students, inept lawyer. But these APs are still restricting, e.g. the skillful doctors

even though the young students are necessarily a subset of the students; and in j must be a subset of the doctors in j, all j, so skillful doctor $ doctor,

this follows on our analysis. where the type for CNPs in the intensional logic is F taken as a boolean

P/J’

Polarity preservation seems somewhat less interesting than polarity algebra defined pointwise on J.

reversal, as there seems to be no correlated syntactic property such as Similarly we can expect that there will be non-transparent homomorphisms

triggering negative polarity items. And again while many operators preserve among the Preds, though no examples were given in LT (78). And an

polarity, e.g. homomorphisms always do, it seems unlikely that we will have algebraic observation (due to Edit Doron, pc) tells us where to look. For

to constrain subcategories as preserving polarity independently of constraints suppose that h is a transparent homomorphism. Construct a non-transparent

one as follows: Fix a particular k in J, and define fh by fh(x)(j) = h(x) (k).

In other words, the value of the new function at an argument has as its

on subcategories or constants which we need anyway.

4.5. Transparency extension in any j the value of h at that argument in a fixed world k. So

if we had a way of referring to possible worlds in our language we could

Non-xi ousl t £ ti £ t
gorously we may say that a function f from X into Y is transparent construct such non-transparent homomorphisms. And many candidates suggest

if f. 11
or a P,q in X and all possible worlds j, if the extension of p in j, themselves.

ext(p,j), = ext(q,j) then ext(f(p),j) = ext(£(q),J). The "definition" assum-

Consider for example date names. Arguably they specify possible worlds
es that X and Y are extensional, that is, that the ext function is defined

(perhaps sets of them). So from a transparent homomorphism like be a woman

on them J). H .
(cross J) ow extensions are defined depends a bit on the category, we should be able to form a non-transparent one like be a woman in 1972.

and of course many categories, i.e. that for TVPs like seek, want, need, etc., This latter Pred clearly seems to be a homomorphism. E.g. if The President

are not extensions. In general, if the type for C is a set of functions with
domain J, then ext(f,j) is just £(j). The properly functional categories

and the Vice President were women in 1972 then The President was and so was

the Vice President, etc., so the Pred preserves meets, etc. But the function
are extensional 1ff their functions are transparent. also seems clearly to not be transparent. For example, in our world (1980)
As is clear from the above informal sketch, transparency is not a the Prime Minister of Israel and Begin have the same extension. But be a
specifically booclean property. And part of our interest in it has already woman in 1972 holds of the former but not the latter, so it is not trans-
been mentioned. Namely certain generalizations concerning the distribution parent.
of transparency and other logical subcategorization features appear to im- And this observétion generalizes to large classes of subordinate
pose constraints on the logical form of natural tanguage. clauses (pointed out to me by David Gil, pc) assumed here to be VP Mods,
foreover, the vague claim that transparency and the other features are as 1s standard in generative grammar. Thus we obtain judgments similar to
independent and interact in interesting ways is itself significant. In a the ones above if in 1972 is replaced by when Nixon was President, etc.
certain sense, intensional logic is made up to distinguish transparent from if clauses behave similarly.
non~-transparent operators. And it is natural to wonder whether non-trans- Yet another case of "possible world fixing" is {llustrated by the

arent operators (the transparent on re all re table in a ten-
b pe ¢ P es are presen € in an exten "picture PP's" discussed in REINHART (1976). Thus from a transparent homo-

sional logic) exhibit any inte ti bool b i . d they do.
gie) ny ?es ng boolean behaviour. An ey do morphism like cry we may form a non-transparent one like cry in Ben's

For exampl the " 1 ict " Mod 1 11 -
mp-e, among e 'merely restricting” Mods, almost a are non picture. Clearly, if the President and the Vice President are crying in



Ben's picture then the President etc. is, and conversely. So it preserves
meets. And if no political figure is crying.in Ben's picture then it is
not the case that a political figure is crying in Ben's picture, so it ap-
pears to preserve complements. And equally it is not transparent. For if,
say in our world, the President is the commander of the armed forces, we
cannot infer from the President is crying In Ben's picture that a five
starred general is, since Ben's picture may not have portrayed the cne

¢crying as a military figure at all but only as a civilian one.

S o By S - e

Among other Preds, it seems likely that many transitive CNPs are non-
transparent homs. Arguably if the property of being onerous is a member of
the duties of the President and the Vice President then it is among the
duties of the President and also among the duties of the Vice President,
SO arguably (but more work needed here) duties (of) preserves meets, etc.
But it is clearly not transparent since i1f the President is the commander
of the Army it will not follow that the duties of the President are the
same as the duties of the commander of the Army, since duties of and many
other such expressions pertain to roles or offices, not the individuals
which hold them.

So we may infer here that non-transparent operators will also present
an interesting boolean behaviour and that in particular Preds wil exhibit
members in all combinations of subcategories +transparent, +homomorphism

(the non-homomorphisms presented earlier are transparent).
5. CONCLUSION

Given that essentially all types are boolean it is not surprising
that this boolean structure is used in natural language for reasons other
than merely interpreting conjunctions, disjunctions, and negations. And
Boole's suggestion that these operations represent "Laws of Thought" seems
reasonable.

On the other hand we can expect that specific categories will present
structure specific to what they describe, structure that is not specifical-
ly boolean. For example, an explicit semantics for Det will require features
(or constants) defined in terms of cardinalities, properties which are not
specifica%ly boolean. Probably the merely restricting AP semantics will
require discussions of "scalar" functions which are possibly not entirely

definable in terms of the boolean < relation (though we get far here).

poubtless the semantics for place and time adverbials and verbal subclasses
will require analysis of our "natural geomeiry“; the semantic differences
between verbs of motion, desire, and perception will doubtless require
gerious analysis of motion, desire, and perception, and there is no reason
to think they are Qpecifically boolean.

So a boolean approach to semantics is clearly not the whole story, but

it is an important chapter.

FOOTNOTES

* The research for this paper was supported by a National Science Founda-

tion Grant no. 202/357-7696.

1, Syntactically the analysis proposed here is similar to that developed in
Delacruz' 'Factives and Proposition Level Constructions in Montague
Grammar' (DELACRUZ 1976). Semantically there are major differences how-
ever. In particular I take the type for sentence complements to be the
boolean closure of the I ‘s, not simply the set of Ip's as in Delacruz.
It is this which allows denotations for everything that John believes,
etc. More importantly, I distinguish the subcategory of strange from that
of true, obvious, etc. the two classes of adjective lying in different
subalgebras of the set of homomorphisms from T§ into Ts, and for me it
is this subcategory difference which accounts for the difference in pre-
supposition. For Delacruz it is the interpretation of the fact that S
which accounts for its presuppositional nature. Thanks to Susan Ben Chorin,
Jeroen Groenendijk and Martin Stokhof for pointing out the similarity to
Delacruz (op cit).

2. Note that as regards elements of P (as opposed to FP/J' the type for CNP
in a standard intensional logic) we can not normally distinguish exten-
sional properties from others, if P is complete and atomic as is usual.
But if P is not required to be atomic it will now be the case that there
will be many, in fact infinitely many, properties in exactly one individ-
ual, no matter what one we chose. Only one of those however will be an
atom (the one whose meet with the meet of the complements of all the
atoms is the zero property). It is of course in the larger class of
properties that we will take denotations of imaginary horse, etc. The
extension of a property may be defined as its meet with the join of all
the atoms, and a property will be called extensional iff it is < to the
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Join of all the atoms. If we think of the join of the atoms as being
the denotation for real then p is extenslonal 1ff p = p A real., Clearly,
the English expressions I cited as being naturally interpreted by atoms
will meet this condition. That is, when we speak of the tallest man we
are not normally comparing against Paul Bunyan, etc. So the fact that we
cannot characterize atoms as the properties which are in exactly one
individual (in a non-atomic algebra) does not argue that the notion of
an atom is unclear pretheoretically. They are still the intended denota-
tions of expressions like tallest man, student who is the only student
who passed, etc.

3. Susan Ben Chorin provides me with the following simpler and direct proof:
For x arbitrary in P, assume x < AI. We must show that x = 0 or x = A1,
whence AI is an atom. From the definition of individual, x € I or x' € I.
Suppose x € I. Then AI < X, whence, from the assumption plus assymetry
of £, x = AI. Suppose x' ¢ I. Then AI < x', whence by transitivity of s,

XS x', s0x=xAx"'=0.

REFERENCES

BOOLE, G., 1847, The mathematical analysis of logic, MacMillan, Barclay
and MacMillan, reprinted by Basil Blackwell, Oxford 1847.

DELACRUZ, E.B., 1976, 'Factives and propositional level constructions in
Montague grammar', in: B. Partee (ed.), Montague grammar,
Academic Press, 1976, pp.177-199.

FAUCONNIER, G., 1979, 'Implication reversal in natural language', in:

F. Guenthner and S. Schmidt (eds), Formal semantics and pragmatics

in natural language, Reidel, Dordrecht.

KARTUNNEN, L., 1973,-'Presuppositions of compound sentences', in: Linguistic

Inquiry 4, 169-193,

KEENAN, E.L., 1980, 'Passive is phrasal, not sentential or lexical’, in:
T. Hoekstra, et al. (eds), Lexical Grammar, pp. 181-215, Foris
Publications, Dordrecht, 1980.

KEENAN, E.L., to appear a, Eliminating the universe: A properly Leibnizian
approach to semantics, in: UCLA Working Papers in Semantics, 1,
1981,

KEENAN, E.L., to appear b, & new approach to intensional properties, in:

UCLA Working Papers in Semantics.lj 1981.

KEENAN, E.L. & L. FALTZ, 1978, Logical types for natural language, UCLA
Occasional Papers in Linguistics 3, to appear in Reldel,

Synthese Language Libary Series, 1981.

KEENAN, E.L. & J. STAVI, to appear, An algebraic representation of quanti-
fication in natural language, in: UCLA Working Papers in Seman-
tics 1, 1981,

LADUSAW, W., 1979, Polarity sensitivity as inherent scope relations,
Ph.D. diss. Univ. of Texas at Austin, to appear in Garland
Press.

MENDELSON, E., 1970, Boolean algebras and switching circuits, Schaum's Out-

line Series, McGraw-Hill Book Co.

MONTRAGUE, R., 1972, 'The proper treatment of quantification in ordinary
English', in: J. Hintikka, J. Moravcsik and P. Suppes (eds),
Approaches to Natural Language, 1973,

REINHART, T., 1976, The syntactic domain of anaphora, Ph.D. diss. MIT.



	A boolean approach to semantics
	A boolean approach to semantics 1
	A boolean approach to semantics 2
	A boolean approach to semantics 3
	A boolean approach to semantics 4
	A boolean approach to semantics 5
	A boolean approach to semantics 6
	A boolean approach to semantics 7
	A boolean approach to semantics 8
	A boolean approach to semantics 9
	A boolean approach to semantics 9b
	A boolean approach to semantics 10
	A boolean approach to semantics 11
	A boolean approach to semantics 12
	A boolean approach to semantics 13
	A boolean approach to semantics 14
	A boolean approach to semantics 15
	A boolean approach to semantics 16
	A boolean approach to semantics 17
	A boolean approach to semantics 18

	a boolean araya
	A boolean approach to semantics
	A boolean approach to semantics 1
	A boolean approach to semantics 2
	A boolean approach to semantics 3
	A boolean approach to semantics 4
	A boolean approach to semantics 5
	A boolean approach to semantics 6
	A boolean approach to semantics 7
	A boolean approach to semantics 8
	A boolean approach to semantics 9
	A boolean approach to semantics 9b
	A boolean approach to semantics 10
	A boolean approach to semantics 11
	A boolean approach to semantics 12
	A boolean approach to semantics 13
	A boolean approach to semantics 14
	A boolean approach to semantics 15
	A boolean approach to semantics 16
	A boolean approach to semantics 17
	A boolean approach to semantics 18


